
__

This work incorporates material developed by the Raspberry Pi Foundation, used under the Creative Commons BY-SA license.
This work is copyright © 2019 by Kennesaw State University and is licensed under the Creative Commons BY-SA license.

Infrared Receiver
These instructions are adapted from: https://www.instructables.com/id/Setup-IR-Remote-
Control-Using-LIRC-for-the-Raspber/

This handout assumes the Raspberry Pi is running Raspbian Buster. Also a working knowledge
of the terminal, basic commands from the command prompt and editing text files is assumed.

Wire the Infrared Receiver

Wire the infrared received as shown in the diagram. Note that with
the raised lens area facing you, the pin on the left is the output and
goes to pin 17 of the Raspberry Pi. The pin on the right is power and
goes to 3v3. The center pin goes to ground.

Beware: This diagram is right for TSOP328xx and many other IR
receivers. However, the TSOP329xx receivers exchange power and
ground. Be sure you have the right receiver. Check the data sheet for
what you have and revise the connections if necessary.

Install lirc

1) Open terminal window and install LIRC. Be forewarned that this
will likely raise an error "Failed to start Flexible IR remote
input/output application support" as the installed files have .dist appended and the suffix must be
removed as shown below.

sudo apt-get update
sudo apt-get install lirc

Don’t worry if you got the error message. Just rename the file as shown.

sudo mv /etc/lirc/lirc_options.conf.dist /etc/lirc/lirc_options.conf

2) Reinstall lirc now that the lirc_options.conf file has been renamed

sudo apt-get install lirc

This time there will be no error message.

Edit lirc_options.conf

Edit /etc/lirc/lirc_options.conf as follows:

sudo nano /etc/lirc/lirc_options.conf

– 2 –

You will need to change two lines.
Locate the line that says “driver” and change “devinput” to “default”
Locate the line that says “device” and change “auto” to “/dev/lirc0”

Press ctrl-o and ctrl-x to save and exit.

Remove .dist suffix from lircd.conf.dist

Remove suffix .dist from /etc/lirc/lircd.conf.dist

sudo mv /etc/lirc/lircd.conf.dist /etc/lirc/lircd.conf

Edit /boot/config.txt

Edit /boot/config.txt by adding one line in the lirc-rpi module section as follows. This example
assumes the Raspberry Pi is 'listening' on pin 17 for the IR receiver but any gpio pin can be used.

sudo nano /boot/config.txt

At the end of the file, add the following line:

dtoverlay=gpio-ir,gpio_pin=17

Press ctrl-o and ctrl-x to save and exit.

Check status and reboot

Stop, start and check status of lircd to ensure there are no errors!

sudo systemctl stop lircd.service
sudo systemctl start lircd.service
sudo systemctl status lircd.service

Press the q key after the status message is displayed.

sudo reboot

Test remote

This step assumes you have an IR receiver hooked up to your Raspberry Pi on the pin specified
in /boot/config.txt. You did this as the first step in this document.

1) Stop the lircd service and test remote using the mode2 command

sudo systemctl stop lircd.service
sudo mode2 -d /dev/lirc0

– 3 –

An error of Cannot initiate device /dev/lirc0 means you omitted the reboot.

3) Point the remote at the receiver and press some buttons. You should see something like this:

pulse 616
space 1626
pulse 619
space 1625
pulse 622

The numbers will be different from the example depending on which keys you press.

4) Press ctrl-c to exit

Set Up for Access with Python

Rename the configuration file.

cd /etc/lirc/lircd.conf.d

The following is one long line:
sudo mv /etc/lirc/lircd.conf.d/devinput.lircd.conf
/etc/lirc/lircd.conf.d/devinput.lircd.conf.copy

Download .conf File for Your Remote

Locate the configuration fine for your remote at http://lirc-remotes.sourceforge.net/remotes-
table.html There are also configuration files here: http://lirc.sourceforge.net/remotes/

If you cannot find the exact file for your remote, try a similar one from the same manufacturer.

Still in the /etc/lirc/lircd/conf.d directory, create a new file with the nano editor and copy/paste
the contents of the configuration file you selected. The example uses myremote, but you may
name the file anything you like. It must end in .conf

sudo nano myremote.conf

Paste your file into the editor window, then ctrl-x to exit. Reply y to the “Save buffer?”
question.

You must stop and restart the lircd service any time you change a .conf file:

sudo systemctl stop lircd.service
sudo systemctl start lircd.service

– 4 –

Python Test Code

Type the following program into the Thonny program window. Save and run it.

https://www.instructables.com/id/Easy-Setup-IR-Remote-
Control-Using-LIRC-for-the-Ra/

from lirc import RawConnection
conn = RawConnection()

def ProcessIRRemote():

#get IR command
#keypress format=(hexcode, repeat_num, command_key, remote_id)

try:
keypress = conn.readline(.0001)

except:
keypress=""

if (keypress != "" and keypress != None):
data = keypress.split()
sequence = data[1]
command = data[2]
#ignore command repeats
if (sequence != "00"):

return
print(command)

print("Starting Up...")
while True:

ProcessIRRemote()

– 5 –

Controlling Devices with Your Remote and Python

In the program listing above, note the line that says
print(command). At that point in the program, the command
has been decoded and can be used in an IF statement. When you
run the code below, pressing a button on the remote causes the
program to print the key name, like KEY_1.

You can insert code into the program to take action when
particular leys are pressed. Here is an example.

In the diagram at the right, an LED with 330Ω resistor has been
added, and the blue rail is connected to GND on the Raspberry
Pi. The center pin of the IR receiver is connected to the blue rail
with an M/M jumper wire.

The program on the next page uses the Power button on the
remote to control the LED. Additions to the program are shown
in red. The redLED.off() line assures that the LED is off
when the program starts.

After the command is printed, an IF statement checks whether the KEY_POWER key was
pressed. If so, redLED.toggle() is called, which turns the LED on if it was off, and off if it
was on. The other commands are printed, but to not initiate any action.

You can “hook” any command that your remote can generate and cause it to take any action that
can be controlled by the Python program. When your program is working reliably, you can
consider commenting out or removing the print statement.

– 6 –

https://www.instructables.com/id/Easy-Setup-IR-Remote-
Control-Using-LIRC-for-the-Ra/

from lirc import RawConnection
from gpiozero import LED

redLED = LED(18)
redLED.off()
conn = RawConnection()

def ProcessIRRemote():

#get IR command
#keypress format=(hexcode, repeat_num, command_key, remote_id)

try:
keypress = conn.readline(.0001)

except:
keypress=""

if (keypress != "" and keypress != None):
data = keypress.split()
sequence = data[1]
command = data[2]
#ignore command repeats
if (sequence != "00"):

return
print(command)
if command == "KEY_POWER":

redLED.toggle()

print("Starting Up...")
while True:

ProcessIRRemote()

